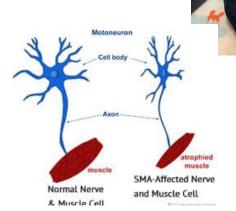
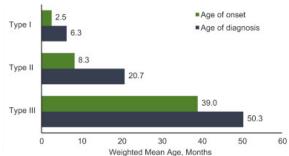


Importance of early diagnosis,

management and new treatment options—


and outcomes.

Dr K Selby BC Pediatric Society July 14 2021



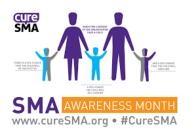
Fully functional SMN protein 10% functional protein and 90% truncated protein

Objectives

- 1. Understand SMA and the importance of early diagnosis
- 2. Understand importance of Standards of care
- 3.Discuss new treatment options, accessibility and expectations
- 4. What difference does this means to outcome

Disclosures

- Clinical Trials
 - DMD: ReveraGen Pfizer, PTC, Italfarmico, Sarepta
 - SMA: Biogen/ IONIS Pharmaceuticals,
 - National Advisory Consultant Biogen and Novartis for SMA
 - Any photos not in the public domain have been consented by the family
 - Educational material for Roche, Novartis and Biogen



5q:Spinal Muscular Atrophy

- An inherited progressive neuromuscular disorder (AR)
- Caused by a defect of the SMN1 gene on Chromosome 5q
- Incidence ~1/10-11,000
- Carrier rate 1/40-60 : Leading cause of infant mortality
- Degeneration of the motor neurones in the spinal cord with progressive weakness and paralysis
- Untreated infants with type 1 SMA do not achieve motor milestones and die before the age of 2 years from respiratory failure
 - SMA type 1 non sitters
 - SMA type 2 sitters
 - SMA type 3 walkers
 - SMA type 4 Adult onset
- Potential for change of Phenotype

Genetics of SMA

- 2 main genes
 - SMN1 gene produces a fully functional protein
 - Mutations SMN1 gene cause SMA
 - 98% homozygous deletion of Exon7/8 SMN1 gene
 - SMN2 gene differs from SMN1 gene by 1 nucleotide
 - 10% of SMN2 transcripts contain exon 7
 - Most of SMN2 lacks exon 7 and produces an inferior unstable protein which rapidly degrades
 - Greater no. of SMN2 copies the milder the disease

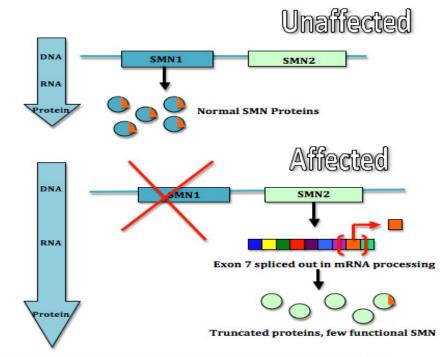
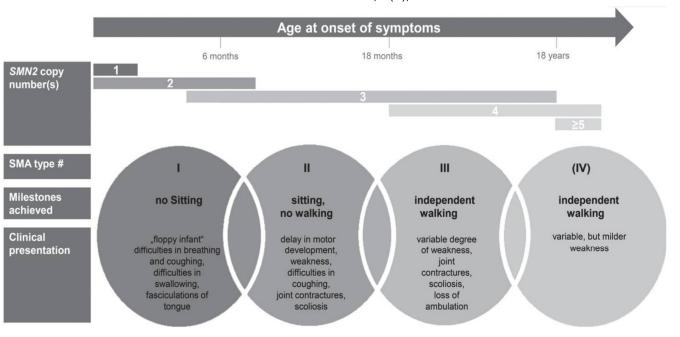


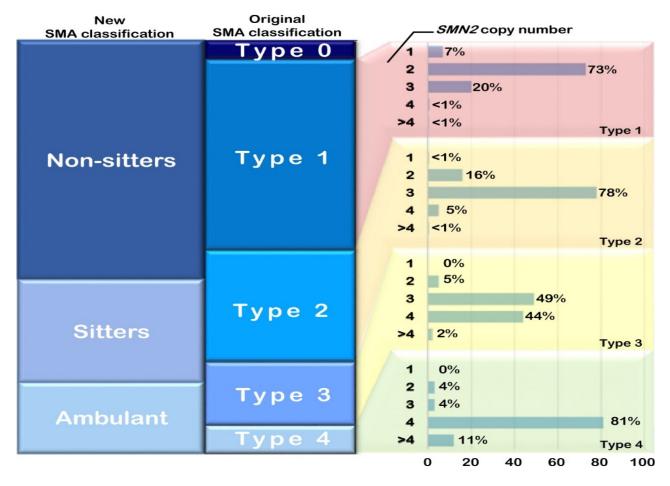
Figure 1: SMN1 and SMN2 in normal and with SMA cases
Orange= exon 7


SMA: Phenotypes

Classification

Advances in treatment of SMA–New Phenotypes, New Challenges, New Implications for Care Schorling, D., Pechmann, A., & Kirschner, J.

Journal of neuromuscular diseases, 7(1), 1–13.

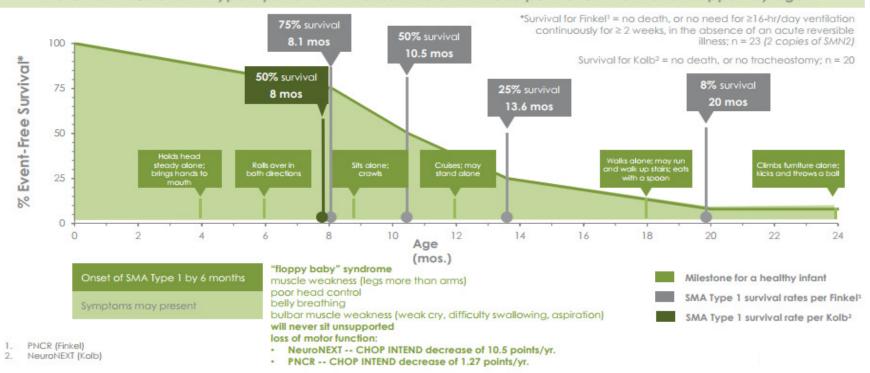


SMA 1 58% SMA 2 29%

SMA 3 13%

SMA 4 1-2%

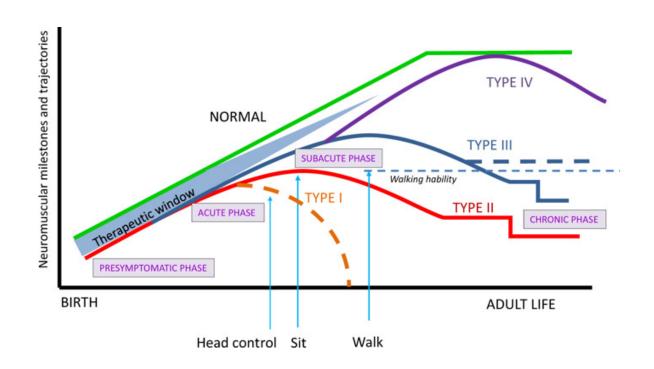
SMA classification



Spinal Cord

Natural History of SMA type 1

Observational Study of SMA type 1: Finkel et al Neurology August 26, 2014 810-817


Diagnostic journey in Spinal Muscular Atrophy: Is it still an odyssey?

Pera MC, Coratti G, Berti B, D'Amico A, Sframeli M, Albamonte E, et al. (2020) 15(3): e0230677. https://doi.org/10.1371/journal.pone.0230677 **First symptoms identified**

SMA I (n:191)			SMA II (n:210)			SMA III (n:80)		
First symptoms identified	N	%	First symptoms identified	N	%	First symptoms identified	N	%
Hypotonia (general)	113	59.16%	Not acquired standing position	83	39.52%	Unsteady ambulation	23	28.75%
Developmental delay (head control)	33	17.28%	Developmental delay (sitting position)	43	20.48%	Frequent falls	18	22.50%
Absence of antigravitary movements	15	7.85%	Hypotonia (lower limbs)	38	18.10%	Difficulty in rise from the floor	10	12.50%
respiratory distress	15	7.85%	Not acquired crawling in time	4	1.90%	Difficulty in stair's climbing	9	11.25%
Developmental regression	7	3.66%	Failure to thrive	1	0.48%	Developmental delay	4	5.00%
Feeding related problems	6	3.14%	Respiratory infections	1	0.48%	Developmental regression	3	3.75%
Absence of deep tendeon reflexes	2	1.05%				Running difficulties	3	3.75%
						'Clumsy' movements	3	3.75%
						Muscle Weakness	2	2.50%
						Toe walking	2	2.50%
						Accidental finding	2	2.50%
						Tremor	1	1.25%

https://doi.org/10.1371/journal.pone.0230677.t001

Trajectory of SMA

Delay in Diagnosis:

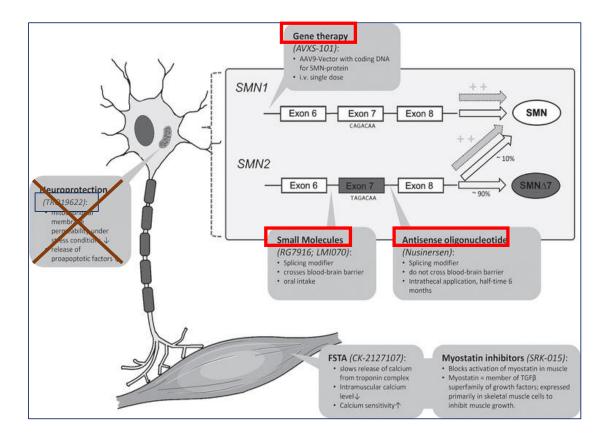
- Diagnostic delay is common in SMA
- The length of delay varied by SMA type
- New Born Screening would help to end diagnostic delay

Importance of standards of care and new treatment options-disease modifying therapies

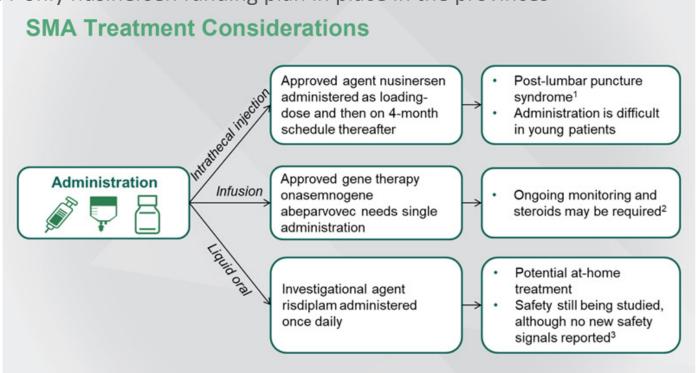
- SOC guidelines
- Improved respiratory care
- Nutritional care
- Orthopedic care
- Physiotherapy
- Disease modifying therapies (DMT)
- What are the prognosticators and what has changed

Diagnosis and management of spinal muscular atrophy: Part 1:

ana Quijano-Roy P, Enrico Bertini A, Rebecca Hurst Davis T, Ying Qian T, Thomas Sejersen T for



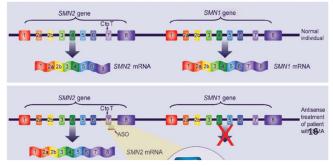
Therapeutic Approaches

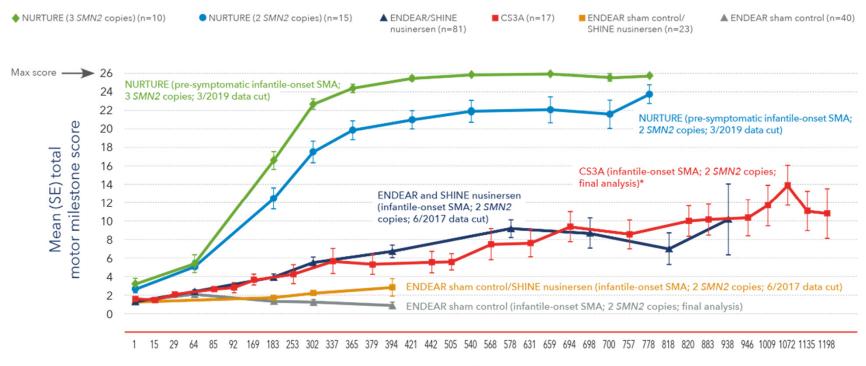

- Modify Splicing of SMN2
- Replacing the SMN1 gene
- Upregulating muscle growth

3 Possible Treatments —

Nusinersen (IT) Onasemnogene Abeparvovec (IV) Risdiplam (PO)

- 3 drugs approved Health Canada
- BUT only nusinersen funding plan in place in the provinces


Nusinersen


- First drug approved for 5q SMA treatment in Canada during June 2017
- Antisense oligonucleotide administered IT
- Enhances the inclusion of exon 7 in mRNA transcripts of SMN2

- Results in increased production of a full length SMN protein
- After 4 initial loading doses, injected IT every 4 months

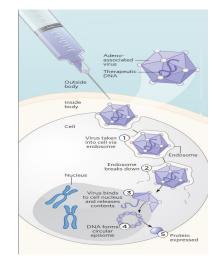
HINE Motor Milestone Scores Over Time Across Studies

Scheduled visit day

Parsons et al, CureSMA 2019, Platform Presentation

Nurture: WHO Motor Milestone Development

	Motor milestone	Expected age of achievement	•	e-confirmed achievement in RE participants	Median (95% CI) age of first achievement, mo		
		in healthy infants 1st-99th percentile ¹	3 SMN2 copies	2 SMN2 copies	3 SMN2 copies	2 SMN2 copies	
<u></u>	Sitting without support	3.8–9.2 months	10/10 (100%)	15/15 (100%)	6.4 (5.1–7.9)	7.9 (5.9–9.2)	
i	Standing with assistance	4.8-11.4 months	10/10 (100%)	15/15 (100%)	8.3 (3.5–9.5)	10.0 (5.1–13.5)	
~	Hands and knees crawling	5.2–13.5 months	10/10 (100%)	13/15 (87%)	8.7 (7.2–10.5)	15.5 (8.9–20.9)	
ķ	Walking with assistance	5.9–13.7 months	10/10 (100%)	13/15 (87%)	9.6 (8.0–11.8)	16.1 (11.8–18.8)	
*	Standing alone	6.9-16.9 months	10/10 (100%)	12/15 (80%)	11.4 (10.3–14.6)	18.6 (12.9–25.9)	
Ř	Walking alone	8.2–17.6 months	10/10 (100%)	12/15 (80%)	12.3 (11.2–14.9)	20.4 (15.5–29.7)	


arsons et al, CureSMA 2019, Platform Presentation

Gene Therapy: Onasemnogene Abeparvovec (OA)

OA is a gene therapy <u>designed</u> to deliver a functional copy of the *SMN1* gene to motor neuron cells in SMA patients

Single IV infusion

OA comprises the shell of a genetically engineered virus Adeno-associated virus (AAV) 9, called a capsid, Delivers *SMN1* transgene under continuous promotor

One and Done IV

Dose—according to weight

Approved in USA, Japan and Brazil for children < 2 yr

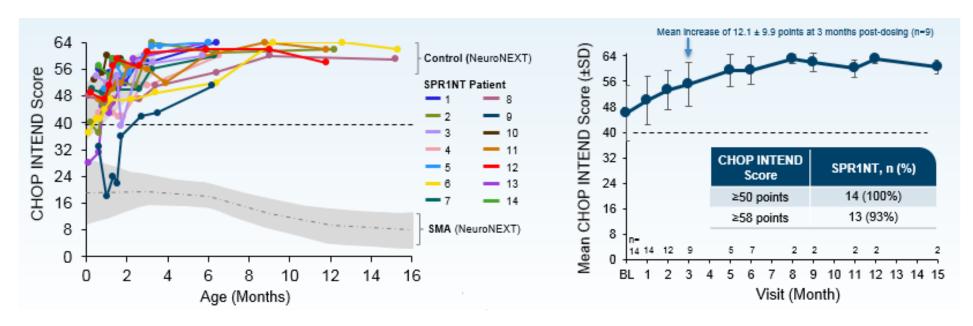
Recommendations by CADTH for use in SMA with 1-3 copies of SMN2 < 6/12

Approved in EU for SMA with up to and including 3 copies of SMN2 < 21 kg

Onasemnogene Abeparvovec

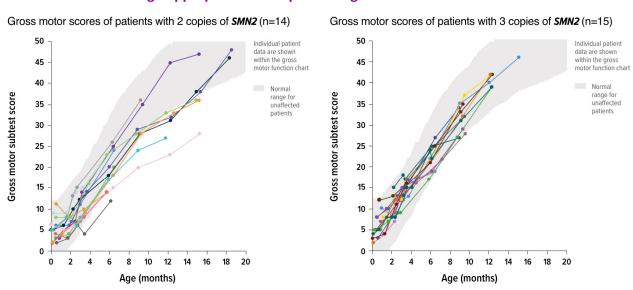
Patients treated:

Access to dosing:	Ages:	Number treated:
START	SMA type I; < 6 months old	15
SPR1NT	SMA; pre-symptomatic 2x or 3xSMN2 copies; < 6 weeks old	30
STRIVE	SMA type I; < 6 months old	33
STRIVE-EU	SMA type I; < 6 months old	22
Managed Access Program	SMA; ≤ 2 years old	43 (as of Dec 2019) ¹
Commercial dosing	SMA; ≤ 2 years old	192 (as of Dec 2019) ¹


As of June 18 2021, >1200 patients have been treated world-wide²

^{1.} Chand D, et al. J Hepatol. 2020

^{2.} Novartis Media Release – https://www.novartis.com/news/media-releases

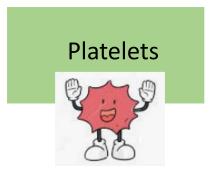

Efficacy: SPR1NT pre-symptomatic treatment

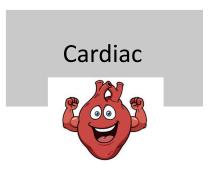
2xSMN2 copy patients

Motor Outcome in Bailey scale Pre-symptomatic SPRINT

SPR1NT: OA enabled age-appropriate development of gross motor function

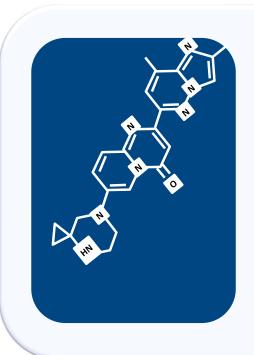
50% (7/14) of patients with 2 copies of *SMN2* and 100% (15/15) of patients with 3 copies of *SMN2* achieved gross motor scores similar to same-age peers without SMA, as of the Dec 2019 data cut^{2,a}


^aGross motor function was measured by the Bayley Scales of Infant and Toddler Development, a standardized, well-accepted tool to assess the development of children between the ages of 1 and 42 months, and compares these scores to a standardized norm.⁵


Presymptomatic treatment (June 2021)

- 100% children treated presymptomatically in the SPRINT 2 copy cohort survived without respiratory or nutritional support
- All children sat independently for > 30 seconds within the normal timeline
- Majority (11/14) went onto stand independently and 9/14 walked independently most within the normal age range
- CHOP intend >58 in 100%
- In Symptomatic Children with SMA type 1 82% achieved motor milestones not achieved in the natural history study and 49% sat unsupported

Management of Known Adverse Events


- Prophylactic prednisone / prednisolone:
 - Pre-treat prednisolone 1-2 mg/kg/d beginning <u>day prior</u> to onasemnogene abeparvovec infusion
 - Prednisolone 1-2 mg/kg/d (x30 days); wean over additional 30 days
 - Vomiting, Fever, Thrombocytopenia, Transaminitis, elevation of Troponin I
 - 3 reports of Thrombotic Microangiopathy (TMA)

- Effective disease-modifying therapy (not a "cure")
- Motor neuron loss may begin before birth (may not fully "normalize" phenotype)
- Clinical trials focused on children < 6 months old; "real-world data" is emerging
- Less experience in older children with more severe symptoms
- Careful balance of potential benefits vs. potential side effects
- Evaluate for underlying medical conditions that might heighten risk of side effects
- Need for close & careful monitoring (months) post-dosing

Risdiplam (RG7916): An oral molecule with CNS and peripheral distribution

Risdiplam^{1,2}

- A selective SMN2 splicing modifier designed to bind uniquely with specificity to SMN2 pre-mRNA
- Promotes the inclusion of exon 7 in SMN2 mRNA and the production of full-length SMN2 mRNA and functional SMN protein
- Orally administered with a systemic distribution
- Liquid once daily
- Penetrates the blood-brain barrier
- Developed in collaboration with SMA Foundation and PTC Therapeutics

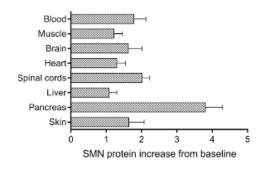
27

Managing SMA: Risdiplam Clinical Trial Programme

Trial (NCT)	Design	Type of SMA	Patient Age Range	Status
RAINBOWFISH (NCT03779334) ¹	Open-label, single-arm, multicentre	Presymptomatic	Infant to 6 wk	Recruiting
FIREFISH (NCT02913482) 2 Parts ²	Open-label	Type 1	Infants	Part 2 met primary endpoint: 29% of infants (12/41) sitting without support for 5 sec by month 12 ³
SUNFISH (NCT02908685) 2 Parts ⁴	Double-blind, PBO-controlled	Type 2 or 3 (nonambulatory)	2 to 25 y	Part 2 met primary endpoint: Change from baseline in the Motor Function Measure 32 scale after 1 y with risdiplam vs PBO ⁵ • No treatment-related safety findings leading to study withdrawal
JEWELFISH (NCT03032172) 2 Parts ⁶	Open-label, exploratory	Previously treated with SMA-directed therapies	6 mo to 60 y	Recruiting

www.peervoice.com/PQF910 Copyright © 2010-2020, PeerVoice

FIREFISH Study: Infants 1-7 months Type 1 SMA 2 SMN2 copies


- 41 infants
- Median age of enrollment 5.3 months
- At assessment median age of 20.7 months
- 90% showed > 4 point increase in CHOP intend
- 56% achieved a score > 40 (median increase 20 points)
- 93% were alive
- 85% did not require ventilation or any respiratory support
- 89% were able to feed orally
- 29% could sit > 5 secs at 12 months.
- No treatment related safety findings led to drug withdrawal

Risdiplam in type 2 and 3 SMA (sunfish)

- Children and Adults with SMA type 2 and 3 aged 2-25 years had improved motor function and stabilization on MFM 32 score at 24 months
- Increased motor function on RULM
- No new safety concerns
- Good benefit vs risk profile
- More than 2,500 patients now treated
- Real world evidence
- S/E: RTI, pyrexia, headaches, diarrhoea, influenza and pneumonia

Treatment evolution in SMA

Primary prevention

- · Reproductive carrier screening
- Reproductive options for couples at high risk

Expected outcomes

 Reduction in incidence and prevalence of SMA

Secondary prevention

Newborn screening and early treatment

Expected outcomes

- · Reduction in burden of SMA
- · Increase in SMA prevalence
- Evolution of new phenotypes
- Personalized (precision medicine) model of care

Tertiary prevention

 Treatment of symptomatic patients

Expected outcomes

- Modification of natural history and disability
- Increase in SMA prevalence
- Evolution of new phenotypes
- · Increase in proactive care

Tertiary prevention

Treat all patients with manifesting disease

Mainly effect in standard of care and evolving phenotypes

Secondary prevention Treat all pre-symptomatic cases detected by newborn screening

Mainly effect in burden and development of the disease

Primary prevention carriers detected in a population based screening

Mainly effect in the incidence and prevalence

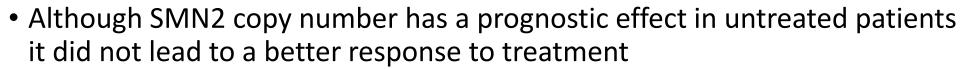
Perform genetic counseling in all

Now treatment choices-- 3 DMT and SOC

- What does this mean for outcomes
- What treatment should we use and when
- What are the changes in Rehabilitation
- Ensuring SOC
- What about changes in care of backs and hips and feeding and bones and equipment
- What about NB Screening
- Cost
- Combination Therapies?

Prognostic Factors and treatment effect modifiers in SMA causing increased survival

- 1. SMN2 Copy number
 - Genotype/phenotype is not absolute
- 2. SMA severity
- 3.More aggressive SOC —leads to increased survival—-however this
 does not lead to acquisition of motor milestones


What are the prognosticators of outcome in SMA

- Introduction of Disease Modifying Treatments(DMTs) has changed the course and outcome of SMA -dramatically
- Treated patients live longer and have improved functional abilities
- Patients have improved quality of life
- Prognostic factors include
 - SMN2 copy number
 - Baseline motor, bulbar and respiratory function
 - Age of symptom onset
 - Age at treatment onset
 - Implementation of standards of care

Factors which modify outcomes of treatment

- Disease duration before initiation of DMT
- Age at treatment initiation in SMA types 1, 2 and 3
- Children with SMA 6-15 years are very susceptible to complications such as progressive contractures, scoliosis and this causes functional deterioration.
- Age of Symptom onset
- Supportive therapy
- Disease severity

Presymptomatic children with 3 copies of SMN2

Conclusions

- Disease Modifying Treatments(DMTs) in SMA are changing the disease trajectory
- Main factors in determining outcome include
 - Age at treatment initiation
 - Use of supportive therapies
 - Disease duration
 - EARLY DIAGNOSIS
 - NewBorn Screening Programs
- Need for Markers to monitor response to ongoing treatment
- Ongoing trials need to ensure adjustments for potential confounders
- Real world evidence and use of Registries-CNDR

Things We Have Learned & Things We Need To Know

- Importance of timing of treatment initiation
- Pre-symptomatic Rx shows favourable outcomes
- New Rx options are changing the natural history and phenotype of SMA
- Longer studies needed to elucidate efficacy and safety profiles and how to individualize therapy
- Do clinical trial populations reflect real world patients?
- How can we improve function with rehabilitation?
- What are the best outcome measures?
- Importance of registries

A Zoom meeting with SMA!

